Info about the actions in the HMDP model under consideration.
Source:R/binary.R
getBinInfoActions.Rd
Info about the actions in the HMDP model under consideration.
Usage
getBinInfoActions(
prefix = "",
labels = TRUE,
fileA = "actionIdx.bin",
filePr = "transProb.bin",
fileW = "actionWeight.bin",
fileLabelW = "actionWeightLbl.bin",
fileLabelA = "actionIdxLbl.bin"
)
Arguments
- prefix
A character string with the prefix added to til binary files.
- labels
Should labels be extracted.
- fileA
The binary file containing the description of actions.
- filePr
The binary file containing the description of transition probabilities.
- fileW
The binary file containing the description of weights.
- fileLabelW
The binary file containing the weight labels.
- fileLabelA
The binary file containing the action labels.
Value
A data frame with the information. Scope string contain the scope of the transitions and can be 4 values:
0: A transition to the next stage in the father process,
1: A transition to next stage in the current process,
2: A transition to a child process (stage zero in the child process),
3: A transition to the state with
sId = idx
is considered.
The index string denote the index (id is scope = 3) of the state at the next stage.
Note
The model don't have to be loaded, i.e only read the binary files. The state id (sId
) will
not be the same as in the loaded model!
Examples
## Use temp dir
wd <- setwd(tempdir())
# Create a small HMDP with two levels
w<-binaryMDPWriter()
w$setWeights(c("Duration","Net reward","Items"))
w$process()
w$stage()
w$state(label="M0")
w$action(label="A0",weights=c(0,0,0),prob=c(2,0,1))
w$process()
w$stage()
w$state(label="D")
w$action(label="A0",weights=c(0,0,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$endAction()
w$action(label="A1",weights=c(0,0,0),prob=c(2,0,1))
w$process()
w$stage()
w$state(label="D")
w$action(label="A0",weights=c(0,0,1),prob=c(1,0,1))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$action(label="A1",weights=c(0,10,5),prob=c(0,0,0.5,0,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$endAction()
w$endState()
w$state(label="M1")
w$action(label="A0",weights=c(0,0,0),prob=c(2,0,1))
w$process()
w$stage()
w$state(label="D")
w$action(label="A0",weights=c(0,0,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$closeWriter()
#>
#> Statistics:
#> states : 16
#> actions: 21
#> weights: 3
#>
#> Closing binary MDP writer.
#>
## Info about the binary files (don't have to load the model first)
getBinInfoStates()
#> # A tibble: 16 × 3
#> sId stageStr label
#> <dbl> <chr> <chr>
#> 1 0 0,0 M0
#> 2 1 0,0,0,0,0 D
#> 3 2 0,0,0,1,0 C0
#> 4 3 0,0,0,1,1 C1
#> 5 4 0,0,0,2,0 C0
#> 6 5 0,0,0,2,1 C1
#> 7 6 0,0,1,0,0 D
#> 8 7 0,0,1,1,0 C0
#> 9 8 0,0,1,2,0 C0
#> 10 9 0,0,1,2,1 C1
#> 11 10 0,1 M1
#> 12 11 0,1,0,0,0 D
#> 13 12 0,1,0,1,0 C0
#> 14 13 0,1,0,1,1 C1
#> 15 14 0,1,0,2,0 C0
#> 16 15 0,1,0,2,1 C1
getBinInfoActions()
#> # A tibble: 21 × 9
#> aId sId scope index pr Duration `Net reward` Items label
#> <dbl> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 0 0 2 0 1 0 0 0 A0
#> 2 1 1 1,1 0,1 0.5,0.5 0 0 1 A0
#> 3 2 2 1 0 1 0 0 0 A0
#> 4 3 2 1,1 0,1 0.5,0.5 1 2 1 A1
#> 5 4 3 1 0 1 0 0 0 A0
#> 6 5 3 1,1 0,1 0.5,0.5 1 2 1 A1
#> 7 6 4 0 0 1 1 4 0 A0
#> 8 7 5 0 0 1 1 4 0 A0
#> 9 8 0 2 0 1 0 0 0 A1
#> 10 9 6 1 0 1 0 0 1 A0
#> # ℹ 11 more rows
## reset working dir
setwd(wd)