Skip to contents

Load the HMDP model defined in the binary files. The model are created in memory using the external C++ library.

Usage

loadMDP(
  prefix = "",
  binNames = c("stateIdx.bin", "stateIdxLbl.bin", "actionIdx.bin", "actionIdxLbl.bin",
    "actionWeight.bin", "actionWeightLbl.bin", "transProb.bin", "externalProcesses.bin"),
  eps = 1e-05,
  check = TRUE,
  verbose = FALSE,
  getLog = TRUE
)

Arguments

prefix

A character string with the prefix added to binNames. Used to identify a specific model.

binNames

A character vector of length 7 giving the names of the binary files storing the model.

eps

The sum of the transition probabilities must at most differ eps from one.

check

Check if the MDP seems correct.

verbose

More output when running algorithms.

getLog

Output the log messages.

Value

A list containing relevant information about the model such as model file names (binNames), time horizon (timeHorizon), number of states (states), number of states at last stage of the founder process (founderStatesLast), number of actions (actions), number of levels (levels), names of the weights associated to each action (weightNames) and a pointer ptr to the model object in memory. Note for models with an infinite time-horizon the states at the founder level is repeated at stage two so have something aka a double array representation.

Examples

## Set working dir
wd <- setwd(tempdir())

# Create the small machine repleacement problem used as an example in L.R. Nielsen and A.R.
# Kristensen. Finding the K best policies in a finite-horizon Markov decision process. European
# Journal of Operational Research, 175(2):1164-1179, 2006. doi:10.1016/j.ejor.2005.06.011.

## Create the MDP using a dummy replacement node
prefix<-"machine1_"
w <- binaryMDPWriter(prefix)
w$setWeights(c("Net reward"))
w$process()
   w$stage()   # stage n=0
      w$state(label="Dummy")          # v=(0,0)
         w$action(label="buy", weights=-100, prob=c(1,0,0.7, 1,1,0.3), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=1
      w$state(label="good")           # v=(1,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.6, 1,1,0.4), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(1,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.6, 1,2,0.4), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=2
      w$state(label="good")           # v=(2,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.5, 1,1,0.5), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(2,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.5, 1,2,0.5), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(2,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(1,3,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=3
      w$state(label="good")           # v=(3,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.2, 1,1,0.8), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(3,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.2, 1,2,0.8), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(3,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(1,3,1), end=TRUE)
      w$endState()
      w$state(label="replaced")       # v=(3,3)
         w$action(label="Dummy", weights=0, prob=c(1,3,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=4
      w$state(label="good", end=TRUE)        # v=(4,0)
      w$state(label="average", end=TRUE)     # v=(4,1)
      w$state(label="not working", end=TRUE) # v=(4,2)
      w$state(label="replaced", end=TRUE)    # v=(4,3)
   w$endStage()
w$endProcess()
w$closeWriter()
#> 
#>   Statistics:
#>     states : 14 
#>     actions: 18 
#>     weights: 1 
#> 
#>   Closing binary MDP writer.
#> 

## Load the model into memory
mdp<-loadMDP(prefix)
#> Read binary files (0.000150204 sec.)
#> Build the HMDP (4.0301e-05 sec.)
#> Checking MDP and found no errors (2.2e-06 sec.)
mdp
#> $binNames
#> [1] "machine1_stateIdx.bin"          "machine1_stateIdxLbl.bin"      
#> [3] "machine1_actionIdx.bin"         "machine1_actionIdxLbl.bin"     
#> [5] "machine1_actionWeight.bin"      "machine1_actionWeightLbl.bin"  
#> [7] "machine1_transProb.bin"         "machine1_externalProcesses.bin"
#> 
#> $timeHorizon
#> [1] 5
#> 
#> $states
#> [1] 14
#> 
#> $founderStatesLast
#> [1] 4
#> 
#> $actions
#> [1] 18
#> 
#> $levels
#> [1] 1
#> 
#> $weightNames
#> [1] "Net reward"
#> 
#> $ptr
#> C++ object <0x55c72bafb0f0> of class 'HMDP' <0x55c727d5e910>
#> 
#> attr(,"class")
#> [1] "HMDP" "list"
plot(mdp)


getInfo(mdp, withList = FALSE)
#> $df
#> # A tibble: 14 × 4
#>      sId stateStr label       actions   
#>    <dbl> <chr>    <chr>       <list>    
#>  1     0 4,0      good        <NULL>    
#>  2     1 4,1      average     <NULL>    
#>  3     2 4,2      not working <NULL>    
#>  4     3 4,3      replaced    <NULL>    
#>  5     4 3,0      good        <list [2]>
#>  6     5 3,1      average     <list [2]>
#>  7     6 3,2      not working <list [2]>
#>  8     7 3,3      replaced    <list [1]>
#>  9     8 2,0      good        <list [2]>
#> 10     9 2,1      average     <list [2]>
#> 11    10 2,2      not working <list [2]>
#> 12    11 1,0      good        <list [2]>
#> 13    12 1,1      average     <list [2]>
#> 14    13 0,0      Dummy       <list [1]>
#> 
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = TRUE)
#> $df
#> # A tibble: 18 × 8
#>      sId stateStr label        aIdx label_action weights trans pr     
#>    <dbl> <chr>    <chr>       <dbl> <chr>        <chr>   <chr> <chr>  
#>  1     4 3,0      good            0 mt           55      0     1      
#>  2     4 3,0      good            1 nmt          70      0,1   0.2,0.8
#>  3     5 3,1      average         0 mt           40      0     1      
#>  4     5 3,1      average         1 nmt          50      1,2   0.2,0.8
#>  5     6 3,2      not working     0 mt           30      0     1      
#>  6     6 3,2      not working     1 rep          5       3     1      
#>  7     7 3,3      replaced        0 Dummy        0       3     1      
#>  8     8 2,0      good            0 mt           55      4     1      
#>  9     8 2,0      good            1 nmt          70      4,5   0.5,0.5
#> 10     9 2,1      average         0 mt           40      4     1      
#> 11     9 2,1      average         1 nmt          50      5,6   0.5,0.5
#> 12    10 2,2      not working     0 mt           30      4     1      
#> 13    10 2,2      not working     1 rep          5       7     1      
#> 14    11 1,0      good            0 mt           55      8     1      
#> 15    11 1,0      good            1 nmt          70      8,9   0.6,0.4
#> 16    12 1,1      average         0 mt           40      8     1      
#> 17    12 1,1      average         1 nmt          50      9,10  0.6,0.4
#> 18    13 0,0      Dummy           0 buy          -100    11,12 0.7,0.3
#> 
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = FALSE)
#> $df
#> # A tibble: 18 × 8
#>      sId stateStr label        aIdx label_action weights trans     pr       
#>    <dbl> <chr>    <chr>       <dbl> <chr>          <dbl> <list>    <list>   
#>  1     4 3,0      good            0 mt                55 <dbl [1]> <dbl [1]>
#>  2     4 3,0      good            1 nmt               70 <dbl [2]> <dbl [2]>
#>  3     5 3,1      average         0 mt                40 <dbl [1]> <dbl [1]>
#>  4     5 3,1      average         1 nmt               50 <dbl [2]> <dbl [2]>
#>  5     6 3,2      not working     0 mt                30 <dbl [1]> <dbl [1]>
#>  6     6 3,2      not working     1 rep                5 <dbl [1]> <dbl [1]>
#>  7     7 3,3      replaced        0 Dummy              0 <dbl [1]> <dbl [1]>
#>  8     8 2,0      good            0 mt                55 <dbl [1]> <dbl [1]>
#>  9     8 2,0      good            1 nmt               70 <dbl [2]> <dbl [2]>
#> 10     9 2,1      average         0 mt                40 <dbl [1]> <dbl [1]>
#> 11     9 2,1      average         1 nmt               50 <dbl [2]> <dbl [2]>
#> 12    10 2,2      not working     0 mt                30 <dbl [1]> <dbl [1]>
#> 13    10 2,2      not working     1 rep                5 <dbl [1]> <dbl [1]>
#> 14    11 1,0      good            0 mt                55 <dbl [1]> <dbl [1]>
#> 15    11 1,0      good            1 nmt               70 <dbl [2]> <dbl [2]>
#> 16    12 1,1      average         0 mt                40 <dbl [1]> <dbl [1]>
#> 17    12 1,1      average         1 nmt               50 <dbl [2]> <dbl [2]>
#> 18    13 0,0      Dummy           0 buy             -100 <dbl [2]> <dbl [2]>
#> 

## Perform value iteration
w<-"Net reward"             # label of the weight we want to optimize
scrapValues<-c(30,10,5,0)   # scrap values (the values of the 4 states at stage 4)
runValueIte(mdp, w, termValues=scrapValues)
#> Run value iteration with epsilon = 0 at most 1 time(s)
#> using quantity 'Net reward' under reward criterion.
#>  Finished. Cpu time 7.6e-06 sec.
getPolicy(mdp)     # optimal policy
#> # A tibble: 14 × 6
#>      sId stateStr stateLabel   aIdx actionLabel weight
#>    <dbl> <chr>    <chr>       <int> <chr>        <dbl>
#>  1     0 4,0      good           -1 ""             30 
#>  2     1 4,1      average        -1 ""             10 
#>  3     2 4,2      not working    -1 ""              5 
#>  4     3 4,3      replaced       -1 ""              0 
#>  5     4 3,0      good            0 "mt"           85 
#>  6     5 3,1      average         0 "mt"           70 
#>  7     6 3,2      not working     0 "mt"           60 
#>  8     7 3,3      replaced        0 "Dummy"         0 
#>  9     8 2,0      good            1 "nmt"         148.
#> 10     9 2,1      average         0 "mt"          125 
#> 11    10 2,2      not working     0 "mt"          115 
#> 12    11 1,0      good            1 "nmt"         208.
#> 13    12 1,1      average         0 "mt"          188.
#> 14    13 0,0      Dummy           0 "buy"         102.

## Calculate the weights of the policy always to maintain
library(magrittr)
policy <- getInfo(mdp, withList = FALSE, dfLevel = "action")$df %>% 
   dplyr::filter(label_action == "mt") %>% 
   dplyr::select(sId, aIdx)
setPolicy(mdp, policy)
runCalcWeights(mdp, w, termValues=scrapValues)
getPolicy(mdp)  
#> # A tibble: 14 × 6
#>      sId stateStr stateLabel   aIdx actionLabel weight
#>    <dbl> <chr>    <chr>       <int> <chr>        <dbl>
#>  1     0 4,0      good           -1 ""            30  
#>  2     1 4,1      average        -1 ""            10  
#>  3     2 4,2      not working    -1 ""             5  
#>  4     3 4,3      replaced       -1 ""             0  
#>  5     4 3,0      good            0 "mt"          85  
#>  6     5 3,1      average         0 "mt"          70  
#>  7     6 3,2      not working     0 "mt"          60  
#>  8     7 3,3      replaced        0 "Dummy"        0  
#>  9     8 2,0      good            0 "mt"         140  
#> 10     9 2,1      average         0 "mt"         125  
#> 11    10 2,2      not working     0 "mt"         115  
#> 12    11 1,0      good            0 "mt"         195  
#> 13    12 1,1      average         0 "mt"         180  
#> 14    13 0,0      Dummy           0 "buy"         90.5



# The example given in L.R. Nielsen and A.R. Kristensen. Finding the K best
# policies in a finite-horizon Markov decision process. European Journal of
# Operational Research, 175(2):1164-1179, 2006. doi:10.1016/j.ejor.2005.06.011,
# does actually not have any dummy replacement node as in the MDP above. The same
# model can be created using a single dummy node at the end of the process.

## Create the MDP using a single dummy node
prefix<-"machine2_"
w <- binaryMDPWriter(prefix)
w$setWeights(c("Net reward"))
w$process()
   w$stage()   # stage n=0
      w$state(label="Dummy")          # v=(0,0)
         w$action(label="buy", weights=-100, prob=c(1,0,0.7, 1,1,0.3), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=1
      w$state(label="good")           # v=(1,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.6, 1,1,0.4), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(1,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.6, 1,2,0.4), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=2
      w$state(label="good")           # v=(2,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.5, 1,1,0.5), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(2,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.5, 1,2,0.5), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(2,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(3,12,1), end=TRUE) # transition to sId=12 (Dummy)
      w$endState()
   w$endStage()
   w$stage()   # stage n=3
      w$state(label="good")           # v=(3,0)
         w$action(label="mt", weights=55, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=70, prob=c(1,0,0.2, 1,1,0.8), end=TRUE)
      w$endState()
      w$state(label="average")        # v=(3,1)
         w$action(label="mt", weights=40, prob=c(1,0,1), end=TRUE)
         w$action(label="nmt", weights=50, prob=c(1,1,0.2, 1,2,0.8), end=TRUE)
      w$endState()
      w$state(label="not working")    # v=(3,2)
         w$action(label="mt", weights=30, prob=c(1,0,1), end=TRUE)
         w$action(label="rep", weights=5, prob=c(3,12,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=4
      w$state(label="good")        # v=(4,0)
         w$action(label="rep", weights=30, prob=c(1,0,1), end=TRUE)
      w$endState()
      w$state(label="average")     # v=(4,1)
         w$action(label="rep", weights=10, prob=c(1,0,1), end=TRUE)
      w$endState()
      w$state(label="not working") # v=(4,2)
         w$action(label="rep", weights=5, prob=c(1,0,1), end=TRUE)
      w$endState()
   w$endStage()
   w$stage()   # stage n=5
      w$state(label="Dummy", end=TRUE)        # v=(5,0)
   w$endStage()
w$endProcess()
w$closeWriter()
#> 
#>   Statistics:
#>     states : 13 
#>     actions: 20 
#>     weights: 1 
#> 
#>   Closing binary MDP writer.
#> 

## Have a look at the state-expanded hypergraph
mdp<-loadMDP(prefix)
#> Read binary files (0.000164104 sec.)
#> Build the HMDP (3.8701e-05 sec.)
#> Checking MDP and found no errors (1.9e-06 sec.)
mdp
#> $binNames
#> [1] "machine2_stateIdx.bin"          "machine2_stateIdxLbl.bin"      
#> [3] "machine2_actionIdx.bin"         "machine2_actionIdxLbl.bin"     
#> [5] "machine2_actionWeight.bin"      "machine2_actionWeightLbl.bin"  
#> [7] "machine2_transProb.bin"         "machine2_externalProcesses.bin"
#> 
#> $timeHorizon
#> [1] 6
#> 
#> $states
#> [1] 13
#> 
#> $founderStatesLast
#> [1] 1
#> 
#> $actions
#> [1] 20
#> 
#> $levels
#> [1] 1
#> 
#> $weightNames
#> [1] "Net reward"
#> 
#> $ptr
#> C++ object <0x55c724e8e540> of class 'HMDP' <0x55c727d5e910>
#> 
#> attr(,"class")
#> [1] "HMDP" "list"
plot(mdp)


getInfo(mdp, withList = FALSE)
#> $df
#> # A tibble: 13 × 4
#>      sId stateStr label       actions   
#>    <dbl> <chr>    <chr>       <list>    
#>  1     0 5,0      Dummy       <NULL>    
#>  2     1 4,0      good        <list [1]>
#>  3     2 4,1      average     <list [1]>
#>  4     3 4,2      not working <list [1]>
#>  5     4 3,0      good        <list [2]>
#>  6     5 3,1      average     <list [2]>
#>  7     6 3,2      not working <list [2]>
#>  8     7 2,0      good        <list [2]>
#>  9     8 2,1      average     <list [2]>
#> 10     9 2,2      not working <list [2]>
#> 11    10 1,0      good        <list [2]>
#> 12    11 1,1      average     <list [2]>
#> 13    12 0,0      Dummy       <list [1]>
#> 
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = TRUE)
#> $df
#> # A tibble: 20 × 8
#>      sId stateStr label        aIdx label_action weights trans pr     
#>    <dbl> <chr>    <chr>       <dbl> <chr>        <chr>   <chr> <chr>  
#>  1     1 4,0      good            0 rep          30      0     1      
#>  2     2 4,1      average         0 rep          10      0     1      
#>  3     3 4,2      not working     0 rep          5       0     1      
#>  4     4 3,0      good            0 mt           55      1     1      
#>  5     4 3,0      good            1 nmt          70      1,2   0.2,0.8
#>  6     5 3,1      average         0 mt           40      1     1      
#>  7     5 3,1      average         1 nmt          50      2,3   0.2,0.8
#>  8     6 3,2      not working     0 mt           30      1     1      
#>  9     6 3,2      not working     1 rep          5       0     1      
#> 10     7 2,0      good            0 mt           55      4     1      
#> 11     7 2,0      good            1 nmt          70      4,5   0.5,0.5
#> 12     8 2,1      average         0 mt           40      4     1      
#> 13     8 2,1      average         1 nmt          50      5,6   0.5,0.5
#> 14     9 2,2      not working     0 mt           30      4     1      
#> 15     9 2,2      not working     1 rep          5       0     1      
#> 16    10 1,0      good            0 mt           55      7     1      
#> 17    10 1,0      good            1 nmt          70      7,8   0.6,0.4
#> 18    11 1,1      average         0 mt           40      7     1      
#> 19    11 1,1      average         1 nmt          50      8,9   0.6,0.4
#> 20    12 0,0      Dummy           0 buy          -100    10,11 0.7,0.3
#> 
getInfo(mdp, withList = FALSE, dfLevel = "action", asStringsActions = FALSE)
#> $df
#> # A tibble: 20 × 8
#>      sId stateStr label        aIdx label_action weights trans     pr       
#>    <dbl> <chr>    <chr>       <dbl> <chr>          <dbl> <list>    <list>   
#>  1     1 4,0      good            0 rep               30 <dbl [1]> <dbl [1]>
#>  2     2 4,1      average         0 rep               10 <dbl [1]> <dbl [1]>
#>  3     3 4,2      not working     0 rep                5 <dbl [1]> <dbl [1]>
#>  4     4 3,0      good            0 mt                55 <dbl [1]> <dbl [1]>
#>  5     4 3,0      good            1 nmt               70 <dbl [2]> <dbl [2]>
#>  6     5 3,1      average         0 mt                40 <dbl [1]> <dbl [1]>
#>  7     5 3,1      average         1 nmt               50 <dbl [2]> <dbl [2]>
#>  8     6 3,2      not working     0 mt                30 <dbl [1]> <dbl [1]>
#>  9     6 3,2      not working     1 rep                5 <dbl [1]> <dbl [1]>
#> 10     7 2,0      good            0 mt                55 <dbl [1]> <dbl [1]>
#> 11     7 2,0      good            1 nmt               70 <dbl [2]> <dbl [2]>
#> 12     8 2,1      average         0 mt                40 <dbl [1]> <dbl [1]>
#> 13     8 2,1      average         1 nmt               50 <dbl [2]> <dbl [2]>
#> 14     9 2,2      not working     0 mt                30 <dbl [1]> <dbl [1]>
#> 15     9 2,2      not working     1 rep                5 <dbl [1]> <dbl [1]>
#> 16    10 1,0      good            0 mt                55 <dbl [1]> <dbl [1]>
#> 17    10 1,0      good            1 nmt               70 <dbl [2]> <dbl [2]>
#> 18    11 1,1      average         0 mt                40 <dbl [1]> <dbl [1]>
#> 19    11 1,1      average         1 nmt               50 <dbl [2]> <dbl [2]>
#> 20    12 0,0      Dummy           0 buy             -100 <dbl [2]> <dbl [2]>
#> 

## Perform value iteration
w<-"Net reward"             # label of the weight we want to optimize
runValueIte(mdp, w, termValues = 0)
#> Run value iteration with epsilon = 0 at most 1 time(s)
#> using quantity 'Net reward' under reward criterion.
#>  Finished. Cpu time 8.901e-06 sec.
getPolicy(mdp)     # optimal policy
#> # A tibble: 13 × 6
#>      sId stateStr stateLabel   aIdx actionLabel weight
#>    <dbl> <chr>    <chr>       <int> <chr>        <dbl>
#>  1     0 5,0      Dummy          -1 ""              0 
#>  2     1 4,0      good            0 "rep"          30 
#>  3     2 4,1      average         0 "rep"          10 
#>  4     3 4,2      not working     0 "rep"           5 
#>  5     4 3,0      good            0 "mt"           85 
#>  6     5 3,1      average         0 "mt"           70 
#>  7     6 3,2      not working     0 "mt"           60 
#>  8     7 2,0      good            1 "nmt"         148.
#>  9     8 2,1      average         0 "mt"          125 
#> 10     9 2,2      not working     0 "mt"          115 
#> 11    10 1,0      good            1 "nmt"         208.
#> 12    11 1,1      average         0 "mt"          188.
#> 13    12 0,0      Dummy           0 "buy"         102.

## Calculate the weights of the policy always to maintain
library(magrittr)
policy <- getInfo(mdp, withList = FALSE, dfLevel = "action")$df %>% 
   dplyr::filter(label_action == "mt") %>% 
   dplyr::select(sId, aIdx)
setPolicy(mdp, policy)
runCalcWeights(mdp, w, termValues=scrapValues)
getPolicy(mdp)  
#> # A tibble: 13 × 6
#>      sId stateStr stateLabel   aIdx actionLabel weight
#>    <dbl> <chr>    <chr>       <int> <chr>        <dbl>
#>  1     0 5,0      Dummy          -1 ""             0  
#>  2     1 4,0      good            0 "rep"         30  
#>  3     2 4,1      average         0 "rep"         10  
#>  4     3 4,2      not working     0 "rep"          5  
#>  5     4 3,0      good            0 "mt"          85  
#>  6     5 3,1      average         0 "mt"          70  
#>  7     6 3,2      not working     0 "mt"          60  
#>  8     7 2,0      good            0 "mt"         140  
#>  9     8 2,1      average         0 "mt"         125  
#> 10     9 2,2      not working     0 "mt"         115  
#> 11    10 1,0      good            0 "mt"         195  
#> 12    11 1,1      average         0 "mt"         180  
#> 13    12 0,0      Dummy           0 "buy"         90.5


## Reset working dir
setwd(wd)