Info about the actions in the HMDP model under consideration.
Source:R/binary.R
getBinInfoActions.RdInfo about the actions in the HMDP model under consideration.
Usage
getBinInfoActions(
prefix = "",
labels = TRUE,
fileA = "actionIdx.bin",
filePr = "transProb.bin",
fileW = "actionWeight.bin",
fileLabelW = "actionWeightLbl.bin",
fileLabelA = "actionIdxLbl.bin"
)Arguments
- prefix
A character string with the prefix added to til binary files.
- labels
Should labels be extracted.
- fileA
The binary file containing the description of actions.
- filePr
The binary file containing the description of transition probabilities.
- fileW
The binary file containing the description of weights.
- fileLabelW
The binary file containing the weight labels.
- fileLabelA
The binary file containing the action labels.
Value
A data frame with the information. Scope string contain the scope of the transitions and can be 4 values:
0: A transition to the next stage in the father process,
1: A transition to next stage in the current process,
2: A transition to a child process (stage zero in the child process),
3: A transition to the state with
sId = idxis considered.
The index string denote the index (id is scope = 3) of the state at the next stage.
Note
The model don't have to be loaded, i.e only read the binary files. The state id (sId) will
not be the same as in the loaded model!
Examples
## Use temp dir
wd <- setwd(tempdir())
# Create a small HMDP with two levels
w<-binaryMDPWriter()
w$setWeights(c("Duration","Net reward","Items"))
w$process()
w$stage()
w$state(label="M0")
w$action(label="A0",weights=c(0,0,0),prob=c(2,0,1))
w$process()
w$stage()
w$state(label="D")
w$action(label="A0",weights=c(0,0,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$endAction()
w$action(label="A1",weights=c(0,0,0),prob=c(2,0,1))
w$process()
w$stage()
w$state(label="D")
w$action(label="A0",weights=c(0,0,1),prob=c(1,0,1))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$action(label="A1",weights=c(1,2,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$action(label="A1",weights=c(0,10,5),prob=c(0,0,0.5,0,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$endAction()
w$endState()
w$state(label="M1")
w$action(label="A0",weights=c(0,0,0),prob=c(2,0,1))
w$process()
w$stage()
w$state(label="D")
w$action(label="A0",weights=c(0,0,1),prob=c(1,0,0.5,1,1,0.5))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(0,0,0),prob=c(1,0,1))
w$endAction()
w$endState()
w$endStage()
w$stage()
w$state(label="C0")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$state(label="C1")
w$action(label="A0",weights=c(1,4,0),prob=c(0,0,1))
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$endAction()
w$endState()
w$endStage()
w$endProcess()
w$closeWriter()
#>
#> Statistics:
#> states : 16
#> actions: 21
#> weights: 3
#>
#> Closing binary MDP writer.
#>
## Info about the binary files (don't have to load the model first)
getBinInfoStates()
#> # A tibble: 16 × 3
#> sId stageStr label
#> <dbl> <chr> <chr>
#> 1 0 0,0 M0
#> 2 1 0,0,0,0,0 D
#> 3 2 0,0,0,1,0 C0
#> 4 3 0,0,0,1,1 C1
#> 5 4 0,0,0,2,0 C0
#> 6 5 0,0,0,2,1 C1
#> 7 6 0,0,1,0,0 D
#> 8 7 0,0,1,1,0 C0
#> 9 8 0,0,1,2,0 C0
#> 10 9 0,0,1,2,1 C1
#> 11 10 0,1 M1
#> 12 11 0,1,0,0,0 D
#> 13 12 0,1,0,1,0 C0
#> 14 13 0,1,0,1,1 C1
#> 15 14 0,1,0,2,0 C0
#> 16 15 0,1,0,2,1 C1
getBinInfoActions()
#> # A tibble: 21 × 9
#> aId sId scope index pr Duration `Net reward` Items label
#> <dbl> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 0 0 2 0 1 0 0 0 A0
#> 2 1 1 1,1 0,1 0.5,0.5 0 0 1 A0
#> 3 2 2 1 0 1 0 0 0 A0
#> 4 3 2 1,1 0,1 0.5,0.5 1 2 1 A1
#> 5 4 3 1 0 1 0 0 0 A0
#> 6 5 3 1,1 0,1 0.5,0.5 1 2 1 A1
#> 7 6 4 0 0 1 1 4 0 A0
#> 8 7 5 0 0 1 1 4 0 A0
#> 9 8 0 2 0 1 0 0 0 A1
#> 10 9 6 1 0 1 0 0 1 A0
#> # ℹ 11 more rows
## reset working dir
setwd(wd)